If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s^2=54
We move all terms to the left:
s^2-(54)=0
a = 1; b = 0; c = -54;
Δ = b2-4ac
Δ = 02-4·1·(-54)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*1}=\frac{0-6\sqrt{6}}{2} =-\frac{6\sqrt{6}}{2} =-3\sqrt{6} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*1}=\frac{0+6\sqrt{6}}{2} =\frac{6\sqrt{6}}{2} =3\sqrt{6} $
| -5x+3x-2=-2(x+1) | | 17.6m-6.27=18.3 | | F(x)=-4x(x+7) | | 14/517.6m-6.27=18.3 | | 3/2x-8=9 | | 2(8x-7)+4=-138 | | 5.6z+2.3=-6.3 | | 12h-2(3h=6)=18 | | .|5x–4|=11 | | -208=3(8r+3)+7r | | 0.5x+5=x-8 | | -x+12=3x-4 | | (x−6)(45x2-116x+63)=0 | | -t/8=-13 | | (2x-3)^2=(x+5)^2-11x-26 | | -8.4x+2.86=-8.2x+3.96 | | -8(-4-8x)=224 | | 1.5z=-15.39-0.4z | | -3(4-3x)=33 | | 4h+10.86=2.1+4.2h+11.22 | | -4(-4+3m)-8=92 | | 1.5z=–15.39−0.4z | | 1/3+5/3x-x=2x | | 0.08(y-7)+0.16y=0.2y-0.7 | | 136=8(-3v-4) | | 5d-8=2d=13 | | (x+8)(x+-2)=6x | | 2)−5+n3=−8 | | 2.37+7.4v-7.09=9.4v+9.28 | | 8b-50=350 | | -3r+-12=-41 | | 8.53+8.63+0.8x=-3.3x-4.16 |